Leading term and coefficient #
We define Surreal.leadingCoeff and Surreal.leadingTerm for the leading coefficient/term of a
surreal's Hahn series.
We don't yet prove this characterization; rather, these functions are a key ingredient in defining the map from surreals into Hahn series.
Leading coefficient #
The leading coefficient of a surreal's Hahn series.
Equations
- x.leadingCoeff = ArchimedeanClass.stdPart (x / ω^ x.wlog)
Instances For
@[simp]
@[simp]
@[simp]
theorem
LinearOrderedAddCommGroupWithTop.sub_self_nonneg
{α : Type u_1}
[LinearOrderedAddCommGroupWithTop α]
{a : α}
:
@[simp]
theorem
LinearOrderedAddCommGroupWithTop.sub_eq_zero
{α : Type u_1}
[LinearOrderedAddCommGroupWithTop α]
{a b : α}
(ha : a ≠ ⊤)
:
theorem
Surreal.leadingCoeff_sub_eq_left
{x y : Surreal}
:
y <ᵥ x → (x - y).leadingCoeff = x.leadingCoeff
theorem
Surreal.leadingCoeff_sub_eq_right
{x y : Surreal}
:
y <ᵥ x → (y - x).leadingCoeff = -x.leadingCoeff
Leading term #
The leading term of a surreal's Hahn series.
Equations
- x.leadingTerm = ↑x.leadingCoeff * ω^ x.wlog
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Surreal.leadingTerm_sub_eq_left
{x y : Surreal}
:
y <ᵥ x → (x - y).leadingTerm = x.leadingTerm
theorem
Surreal.leadingTerm_sub_eq_right
{x y : Surreal}
:
y <ᵥ x → (y - x).leadingTerm = -x.leadingTerm