Documentation

CombinatorialGames.Surreal.Leading

Leading term and coefficient #

We define Surreal.leadingCoeff and Surreal.leadingTerm for the leading coefficient/term of a surreal's Hahn series.

We don't yet prove this characterization; rather, these functions are a key ingredient in defining the map from surreals into Hahn series.

Leading coefficient #

The leading coefficient of a surreal's Hahn series.

Equations
Instances For
    @[simp]
    @[simp]
    theorem Surreal.leadingCoeff_ratCast (q : ) :
    (↑q).leadingCoeff = q
    @[simp]
    theorem Surreal.leadingCoeff_intCast (n : ) :
    (↑n).leadingCoeff = n
    @[simp]
    theorem Surreal.leadingCoeff_natCast (n : ) :
    (↑n).leadingCoeff = n
    @[simp]
    theorem LinearOrderedAddCommGroupWithTop.sub_eq_zero {α : Type u_1} [LinearOrderedAddCommGroupWithTop α] {a b : α} (ha : a ) :
    b - a = 0 b = a
    theorem Surreal.wlog_eq {x y : Surreal} {r : } (hr : r 0) (hL : s < r, s * ω^ y x) (hR : s > r, x s * ω^ y) :
    x.wlog = y
    theorem Surreal.leadingCoeff_eq {x y : Surreal} {r : } (hr : r 0) (hL : s < r, s * ω^ y x) (hR : s > r, x s * ω^ y) :

    Leading term #

    The leading term of a surreal's Hahn series.

    Equations
    Instances For
      @[simp]
      theorem Surreal.leadingTerm_realCast (r : ) :
      (↑r).leadingTerm = r
      @[simp]
      theorem Surreal.leadingTerm_ratCast (q : ) :
      (↑q).leadingTerm = q
      @[simp]
      theorem Surreal.leadingTerm_intCast (n : ) :
      (↑n).leadingTerm = n
      @[simp]
      theorem Surreal.leadingTerm_natCast (n : ) :
      (↑n).leadingTerm = n
      theorem Surreal.leadingTerm_eq {x y : Surreal} {r : } (hr : r 0) (hL : s < r, s * ω^ y x) (hR : s > r, x s * ω^ y) :
      x.leadingTerm = r * ω^ y