Surreal exponentiation #
We define here the ω-map on games and on surreal numbers, representing exponentials with base ω
.
Todo #
- Prove that
ω^ x
matches ordinal exponentiation for ordinalx
. - Define commensurate surreals and prove properties relating to
ω^ x
. - Define the normal form of a surreal number.
Equations
- «termω^_» = Lean.ParserDescr.node `«termω^_» 75 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "ω^ ") (Lean.ParserDescr.cat `term 75))
Instances For
@[simp]
@[simp]
theorem
IGame.mul_wpow_mem_rightMoves_wpow
{x y : IGame}
{r : Dyadic}
(hr : 0 < r)
(hy : y ∈ x.rightMoves)
:
theorem
IGame.natCast_mul_wpow_mem_rightMoves_wpow
{x y : IGame}
{n : ℕ}
(hn : 0 < n)
(hy : y ∈ x.rightMoves)
:
Equations
- Surreal.instWpow = { wpow := Quotient.lift (fun (x : Subtype IGame.Numeric) => Surreal.mk (ω^ ↑x)) Surreal.instWpow._proof_2 }