Documentation
CombinatorialGames
.
Surreal
.
Dyadic
.
Birthday
Search
return to top
source
Imports
Init
CombinatorialGames.Surreal.Birthday.Cut
CombinatorialGames.Surreal.Dyadic.Basic
Imported by
Game
.
birthday_ratCast
Surreal
.
birthday_dyadic_lt_omega0
Surreal
.
birthday_lt_omega0_iff
Birthday of dyadic rationals
#
We prove that a surreal number has a finite birthday iff it's a dyadic number.
source
@[simp]
theorem
Game
.
birthday_ratCast
(
x
:
ℚ
)
:
(↑
x
)
.
birthday
=
(↑
x
)
.
birthday
source
theorem
Surreal
.
birthday_dyadic_lt_omega0
(
x
:
Dyadic
)
:
(↑
↑
x
)
.
birthday
<
NatOrdinal.of
Ordinal.omega0
source
theorem
Surreal
.
birthday_lt_omega0_iff
{
x
:
Surreal
}
:
x
.
birthday
<
NatOrdinal.of
Ordinal.omega0
↔
x
∈
Set.range
fun (
x
:
Dyadic
) =>
↑
↑
x