Documentation

CombinatorialGames.Surreal.Birthday.Cut

Birthday of cuts #

We introduce the birthday of a (surreal) cut as Cut.birthday, and relate it to the birthdays of games and surreal numbers.

This definition doesn't exist in the literature, but it's useful in proving results about the birthdays of games. In particular, it allows us to prove the equality birthday_toGame : x.toGame.birthday = x.birthday for surreal numbers x. See https://mathoverflow.net/a/497645/147705 for a "plaintext" version of this proof.

Birthday of cuts #

noncomputable def Surreal.Cut.birthday (x : Cut) :

The birthday of a cut x is defined as the infimum of ⨆ a ∈ s, a.birthday + 1 over all sets s of surreals where either the infimum of the left cuts or the supremum of right cuts of s equals x.

The birthday takes values in WithTop NatOrdinal. Cuts with birthday are precisely those where the set s is not small.

This isn't a term in the literature, but it's useful for proving that birthdays of surreals equal those of their associated games.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem Surreal.Cut.birthday_eq_sSup_birthday (x : Cut) :
    ∃ (s : Set Surreal), (sInf (leftSurreal '' s) = x sSup (rightSurreal '' s) = x) sSup ((fun (x : Surreal) => x.birthday + 1) '' s) = x.birthday
    theorem Surreal.Cut.birthday_iInf_leftSurreal_le {ι : Type u_1} (f : ιSurreal) :
    (⨅ (i : ι), leftSurreal (f i)).birthday ⨆ (i : ι), (f i).birthday + 1
    theorem Surreal.Cut.birthday_iSup_rightSurreal_le {ι : Type u_1} (f : ιSurreal) :
    (⨆ (i : ι), rightSurreal (f i)).birthday ⨆ (i : ι), (f i).birthday + 1
    theorem Surreal.Cut.birthday_iInf_leftSurreal_le' {ι : Type u_1} (f : ιSurreal) [Small.{u, u_1} ι] :
    (⨅ (i : ι), leftSurreal (f i)).birthday (⨆ (i : ι), (f i).birthday + 1)
    theorem Surreal.Cut.birthday_iSup_rightSurreal_le' {ι : Type u_1} (f : ιSurreal) [Small.{u, u_1} ι] :
    (⨆ (i : ι), rightSurreal (f i)).birthday (⨆ (i : ι), (f i).birthday + 1)
    theorem Surreal.Cut.birthday_lt_sSup_birthday {a : Surreal} {s : Set Surreal} (ha : a s) :
    a.birthday < sSup ((fun (x : Surreal) => x.birthday + 1) '' s)
    theorem Surreal.Cut.exists_birthday_lt_of_mem_Ioo {x y z : Cut} (h : y Set.Ioo x z) :
    ∃ (a : Surreal), a.birthday < y.birthday Fits a x z
    theorem Surreal.Cut.birthday_iInf_le {ι : Type u_1} (f : ιCut) :
    (⨅ (i : ι), f i).birthday ⨆ (i : ι), (f i).birthday
    theorem Surreal.Cut.birthday_iSup_le {ι : Type u_1} (f : ιCut) :
    (⨆ (i : ι), f i).birthday ⨆ (i : ι), (f i).birthday
    @[simp]

    The smallest birthday among numeric games equivalent to a surreal, is also the smallest birthday among all games in general.