Documentation

Mathlib.RingTheory.HahnSeries.Cardinal

Cardinality of Hahn series #

We define HahnSeries.cardSupp as the cardinality of the support of a Hahn series, and find bounds for the cardinalities of different operations. We also build the subgroups, subrings, etc. of Hahn series bounded by a given infinite cardinal.

Cardinality function #

def HahnSeries.cardSupp {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [Zero R] (x : HahnSeries Γ R) :

The cardinality of the support of a Hahn series.

Equations
Instances For
    theorem HahnSeries.cardSupp_congr {Γ : Type u_1} {R : Type u_2} {S : Type u_3} [PartialOrder Γ] [Zero R] [Zero S] {x : HahnSeries Γ R} {y : HahnSeries Γ S} (h : x.support = y.support) :
    theorem HahnSeries.cardSupp_mono {Γ : Type u_1} {R : Type u_2} {S : Type u_3} [PartialOrder Γ] [Zero R] [Zero S] {x : HahnSeries Γ R} {y : HahnSeries Γ S} (h : x.support y.support) :
    @[simp]
    theorem HahnSeries.cardSupp_zero {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [Zero R] :
    theorem HahnSeries.cardSupp_single_of_ne {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [Zero R] (a : Γ) {r : R} (h : r 0) :
    ((single a) r).cardSupp = 1
    theorem HahnSeries.cardSupp_single_le {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [Zero R] (a : Γ) (r : R) :
    ((single a) r).cardSupp 1
    @[simp]
    theorem HahnSeries.cardSupp_one_le {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [Zero R] [Zero Γ] [One R] :
    @[simp]
    theorem HahnSeries.cardSupp_one {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [Zero R] [Zero Γ] [One R] [NeZero 1] :
    theorem HahnSeries.cardSupp_map_le {Γ : Type u_1} {R : Type u_2} {S : Type u_3} [PartialOrder Γ] [Zero R] [Zero S] (x : HahnSeries Γ R) (f : ZeroHom R S) :
    theorem HahnSeries.cardSupp_truncLT_le {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [Zero R] [DecidableLT Γ] (x : HahnSeries Γ R) (c : Γ) :
    theorem HahnSeries.cardSupp_smul_le {Γ : Type u_1} {R : Type u_2} {S : Type u_3} [PartialOrder Γ] [Zero R] (s : S) (x : HahnSeries Γ R) [SMulZeroClass S R] :
    theorem HahnSeries.cardSupp_neg_le {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [NegZeroClass R] (x : HahnSeries Γ R) :
    theorem HahnSeries.cardSupp_add_le {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddMonoid R] (x y : HahnSeries Γ R) :
    @[simp]
    theorem HahnSeries.cardSupp_neg {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddGroup R] (x : HahnSeries Γ R) :
    theorem HahnSeries.cardSupp_sub_le {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddGroup R] (x y : HahnSeries Γ R) :
    theorem HahnSeries.cardSupp_pow_le {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid Γ] [IsOrderedCancelAddMonoid Γ] [Semiring R] (x : HahnSeries Γ R) (n : ) :
    (x ^ n).cardSupp x.cardSupp ^ n
    theorem HahnSeries.cardSupp_hsum_le {Γ : Type u_1} {R : Type u_2} {α : Type u_4} [PartialOrder Γ] [AddCommMonoid R] (s : SummableFamily Γ R α) :

    Substructures #

    The κ-bounded submonoid of Hahn series with less than κ terms.

    Equations
    Instances For
      @[simp]
      theorem HahnSeries.coe_cardSuppLTAddSubmonoid (Γ : Type u_1) (R : Type u_2) (κ : Cardinal.{u_1}) [PartialOrder Γ] [AddMonoid R] [ : Fact (Cardinal.aleph0 κ)] :
      (cardSuppLTAddSubmonoid Γ R κ) = {x : HahnSeries Γ R | x.cardSupp < κ}
      @[simp]

      The κ-bounded subgroup of Hahn series with less than κ terms.

      Equations
      Instances For
        @[simp]
        theorem HahnSeries.coe_cardSuppLTAddSubgroup (Γ : Type u_1) (R : Type u_2) (κ : Cardinal.{u_1}) [PartialOrder Γ] [AddGroup R] [ : Fact (Cardinal.aleph0 κ)] :
        (cardSuppLTAddSubgroup Γ R κ) = {x : HahnSeries Γ R | x.cardSupp < κ}
        @[simp]
        theorem HahnSeries.mem_cardSuppLTAddSubgroup {Γ : Type u_1} {R : Type u_2} (κ : Cardinal.{u_1}) [PartialOrder Γ] [AddGroup R] [ : Fact (Cardinal.aleph0 κ)] {x : HahnSeries Γ R} :

        The κ-bounded subring of Hahn series with less than κ terms.

        Equations
        Instances For
          @[simp]

          The κ-bounded subfield of Hahn series with less than κ terms.

          Equations
          Instances For
            @[simp]
            theorem HahnSeries.mem_cardSuppLTSubfield {Γ : Type u_1} {R : Type u_2} (κ : Cardinal.{u_1}) [LinearOrder Γ] [AddCommGroup Γ] [IsOrderedAddMonoid Γ] [Field R] [ : Fact (Cardinal.aleph0 < κ)] {x : HahnSeries Γ R} :