Cardinality of Hahn series #
We define HahnSeries.cardSupp as the cardinality of the support of a Hahn series, and find bounds
for the cardinalities of different operations. We also build the subgroups, subrings, etc. of Hahn
series bounded by a given infinite cardinal.
Cardinality function #
def
HahnSeries.cardSupp
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[Zero R]
(x : HahnSeries Γ R)
:
The cardinality of the support of a Hahn series.
Equations
- x.cardSupp = Cardinal.mk ↑x.support
Instances For
theorem
HahnSeries.cardSupp_congr
{Γ : Type u_1}
{R : Type u_2}
{S : Type u_3}
[PartialOrder Γ]
[Zero R]
[Zero S]
{x : HahnSeries Γ R}
{y : HahnSeries Γ S}
(h : x.support = y.support)
:
theorem
HahnSeries.cardSupp_mono
{Γ : Type u_1}
{R : Type u_2}
{S : Type u_3}
[PartialOrder Γ]
[Zero R]
[Zero S]
{x : HahnSeries Γ R}
{y : HahnSeries Γ S}
(h : x.support ⊆ y.support)
:
@[simp]
theorem
HahnSeries.cardSupp_single_of_ne
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[Zero R]
(a : Γ)
{r : R}
(h : r ≠ 0)
:
theorem
HahnSeries.cardSupp_single_le
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[Zero R]
(a : Γ)
(r : R)
:
@[simp]
theorem
HahnSeries.cardSupp_one_le
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[Zero R]
[Zero Γ]
[One R]
:
theorem
HahnSeries.cardSupp_map_le
{Γ : Type u_1}
{R : Type u_2}
{S : Type u_3}
[PartialOrder Γ]
[Zero R]
[Zero S]
(x : HahnSeries Γ R)
(f : ZeroHom R S)
:
theorem
HahnSeries.cardSupp_truncLT_le
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[Zero R]
[DecidableLT Γ]
(x : HahnSeries Γ R)
(c : Γ)
:
theorem
HahnSeries.cardSupp_smul_le
{Γ : Type u_1}
{R : Type u_2}
{S : Type u_3}
[PartialOrder Γ]
[Zero R]
(s : S)
(x : HahnSeries Γ R)
[SMulZeroClass S R]
:
theorem
HahnSeries.cardSupp_neg_le
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[NegZeroClass R]
(x : HahnSeries Γ R)
:
theorem
HahnSeries.cardSupp_add_le
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[AddMonoid R]
(x y : HahnSeries Γ R)
:
@[simp]
theorem
HahnSeries.cardSupp_neg
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[AddGroup R]
(x : HahnSeries Γ R)
:
theorem
HahnSeries.cardSupp_sub_le
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[AddGroup R]
(x y : HahnSeries Γ R)
:
theorem
HahnSeries.cardSupp_mul_le
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[AddCommMonoid Γ]
[IsOrderedCancelAddMonoid Γ]
[NonUnitalNonAssocSemiring R]
(x y : HahnSeries Γ R)
:
theorem
HahnSeries.cardSupp_single_mul_le
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[AddCommMonoid Γ]
[IsOrderedCancelAddMonoid Γ]
[NonUnitalNonAssocSemiring R]
(x : HahnSeries Γ R)
(a : Γ)
(r : R)
:
theorem
HahnSeries.cardSupp_mul_single_le
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[AddCommMonoid Γ]
[IsOrderedCancelAddMonoid Γ]
[NonUnitalNonAssocSemiring R]
(x : HahnSeries Γ R)
(a : Γ)
(r : R)
:
theorem
HahnSeries.cardSupp_pow_le
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[AddCommMonoid Γ]
[IsOrderedCancelAddMonoid Γ]
[Semiring R]
(x : HahnSeries Γ R)
(n : ℕ)
:
theorem
HahnSeries.cardSupp_hsum_le
{Γ : Type u_1}
{R : Type u_2}
{α : Type u_4}
[PartialOrder Γ]
[AddCommMonoid R]
(s : SummableFamily Γ R α)
:
theorem
HahnSeries.cardSupp_hsum_powers_le
{Γ : Type u_1}
{R : Type u_2}
[LinearOrder Γ]
[AddCommMonoid Γ]
[IsOrderedCancelAddMonoid Γ]
[CommRing R]
(x : HahnSeries Γ R)
:
theorem
HahnSeries.cardSupp_inv_le
{Γ : Type u_1}
{R : Type u_2}
[LinearOrder Γ]
[AddCommGroup Γ]
[IsOrderedAddMonoid Γ]
[Field R]
(x : HahnSeries Γ R)
:
theorem
HahnSeries.cardSupp_div_le
{Γ : Type u_1}
{R : Type u_2}
[LinearOrder Γ]
[AddCommGroup Γ]
[IsOrderedAddMonoid Γ]
[Field R]
(x y : HahnSeries Γ R)
:
Substructures #
def
HahnSeries.cardSuppLTAddSubmonoid
(Γ : Type u_1)
(R : Type u_2)
(κ : Cardinal.{u_1})
[PartialOrder Γ]
[AddMonoid R]
[hκ : Fact (Cardinal.aleph0 ≤ κ)]
:
AddSubmonoid (HahnSeries Γ R)
The κ-bounded submonoid of Hahn series with less than κ terms.
Equations
Instances For
@[simp]
theorem
HahnSeries.coe_cardSuppLTAddSubmonoid
(Γ : Type u_1)
(R : Type u_2)
(κ : Cardinal.{u_1})
[PartialOrder Γ]
[AddMonoid R]
[hκ : Fact (Cardinal.aleph0 ≤ κ)]
:
@[simp]
theorem
HahnSeries.mem_cardSuppLTAddSubmonoid
{Γ : Type u_1}
{R : Type u_2}
(κ : Cardinal.{u_1})
[PartialOrder Γ]
[AddMonoid R]
[hκ : Fact (Cardinal.aleph0 ≤ κ)]
{x : HahnSeries Γ R}
:
def
HahnSeries.cardSuppLTAddSubgroup
(Γ : Type u_1)
(R : Type u_2)
(κ : Cardinal.{u_1})
[PartialOrder Γ]
[AddGroup R]
[hκ : Fact (Cardinal.aleph0 ≤ κ)]
:
AddSubgroup (HahnSeries Γ R)
The κ-bounded subgroup of Hahn series with less than κ terms.
Equations
- HahnSeries.cardSuppLTAddSubgroup Γ R κ = { toAddSubmonoid := HahnSeries.cardSuppLTAddSubmonoid Γ R κ, neg_mem' := ⋯ }
Instances For
@[simp]
theorem
HahnSeries.coe_cardSuppLTAddSubgroup
(Γ : Type u_1)
(R : Type u_2)
(κ : Cardinal.{u_1})
[PartialOrder Γ]
[AddGroup R]
[hκ : Fact (Cardinal.aleph0 ≤ κ)]
:
@[simp]
theorem
HahnSeries.mem_cardSuppLTAddSubgroup
{Γ : Type u_1}
{R : Type u_2}
(κ : Cardinal.{u_1})
[PartialOrder Γ]
[AddGroup R]
[hκ : Fact (Cardinal.aleph0 ≤ κ)]
{x : HahnSeries Γ R}
:
def
HahnSeries.cardSuppLTSubring
(Γ : Type u_1)
(R : Type u_2)
(κ : Cardinal.{u_1})
[PartialOrder Γ]
[AddCommMonoid Γ]
[IsOrderedCancelAddMonoid Γ]
[Ring R]
[hκ : Fact (Cardinal.aleph0 ≤ κ)]
:
Subring (HahnSeries Γ R)
The κ-bounded subring of Hahn series with less than κ terms.
Equations
- HahnSeries.cardSuppLTSubring Γ R κ = { carrier := (HahnSeries.cardSuppLTAddSubgroup Γ R κ).carrier, mul_mem' := ⋯, one_mem' := ⋯, add_mem' := ⋯, zero_mem' := ⋯, neg_mem' := ⋯ }
Instances For
@[simp]
theorem
HahnSeries.mem_cardSuppLTSubring
{Γ : Type u_1}
{R : Type u_2}
(κ : Cardinal.{u_1})
[PartialOrder Γ]
[AddCommMonoid Γ]
[IsOrderedCancelAddMonoid Γ]
[Ring R]
[hκ : Fact (Cardinal.aleph0 ≤ κ)]
{x : HahnSeries Γ R}
:
def
HahnSeries.cardSuppLTSubfield
(Γ : Type u_1)
(R : Type u_2)
(κ : Cardinal.{u_1})
[LinearOrder Γ]
[AddCommGroup Γ]
[IsOrderedAddMonoid Γ]
[Field R]
[hκ : Fact (Cardinal.aleph0 < κ)]
:
Subfield (HahnSeries Γ R)
The κ-bounded subfield of Hahn series with less than κ terms.
Equations
- HahnSeries.cardSuppLTSubfield Γ R κ = { toSubring := have this := ⋯; HahnSeries.cardSuppLTSubring Γ R κ, inv_mem' := ⋯ }
Instances For
@[simp]
theorem
HahnSeries.cardSuppLTSubfield_carrier
(Γ : Type u_1)
(R : Type u_2)
(κ : Cardinal.{u_1})
[LinearOrder Γ]
[AddCommGroup Γ]
[IsOrderedAddMonoid Γ]
[Field R]
[hκ : Fact (Cardinal.aleph0 < κ)]
:
@[simp]
theorem
HahnSeries.mem_cardSuppLTSubfield
{Γ : Type u_1}
{R : Type u_2}
(κ : Cardinal.{u_1})
[LinearOrder Γ]
[AddCommGroup Γ]
[IsOrderedAddMonoid Γ]
[Field R]
[hκ : Fact (Cardinal.aleph0 < κ)]
{x : HahnSeries Γ R}
: