Documentation

Mathlib.Order.Preorder.Finsupp

Pointwise order on finitely supported functions #

This file lifts order structures on M to ι →₀ M.

instance Finsupp.instLE {ι : Type u_1} {M : Type u_2} [Zero M] [LE M] :
LE (ι →₀ M)
Equations
theorem Finsupp.le_def {ι : Type u_1} {M : Type u_2} [Zero M] [LE M] {f g : ι →₀ M} :
f g ∀ (i : ι), f i g i
@[simp]
theorem Finsupp.coe_le_coe {ι : Type u_1} {M : Type u_2} [Zero M] [LE M] {f g : ι →₀ M} :
f g f g
def Finsupp.orderEmbeddingToFun {ι : Type u_1} {M : Type u_2} [Zero M] [LE M] :
(ι →₀ M) ↪o (ιM)

The order on Finsupps over a partial order embeds into the order on functions

Equations
Instances For
    @[simp]
    theorem Finsupp.orderEmbeddingToFun_apply {ι : Type u_1} {M : Type u_2} [Zero M] [LE M] (f : ι →₀ M) (a : ι) :
    def Finsupp.orderIsoFunOnFinite {ι : Type u_1} {M : Type u_2} [Zero M] [LE M] [Finite ι] :
    (ι →₀ M) ≃o (ιM)

    equivFunOnFinite as an order isomorphism.

    Equations
    Instances For
      instance Finsupp.preorder {ι : Type u_1} {M : Type u_2} [Zero M] [Preorder M] :
      Equations
      theorem Finsupp.lt_def {ι : Type u_1} {M : Type u_2} [Zero M] [Preorder M] {f g : ι →₀ M} :
      f < g f g ∃ (i : ι), f i < g i
      @[simp]
      theorem Finsupp.coe_lt_coe {ι : Type u_1} {M : Type u_2} [Zero M] [Preorder M] {f g : ι →₀ M} :
      f < g f < g
      theorem Finsupp.coe_mono {ι : Type u_1} {M : Type u_2} [Zero M] [Preorder M] :
      theorem Finsupp.coe_strictMono {ι : Type u_1} {M : Type u_2} [Zero M] [Preorder M] :
      instance Finsupp.partialorder {ι : Type u_1} {M : Type u_2} [Zero M] [PartialOrder M] :
      Equations
      instance Finsupp.semilatticeInf {ι : Type u_1} {M : Type u_2} [Zero M] [SemilatticeInf M] :
      Equations
      @[simp]
      theorem Finsupp.inf_apply {ι : Type u_1} {M : Type u_2} [Zero M] [SemilatticeInf M] (f g : ι →₀ M) (i : ι) :
      (fg) i = f ig i
      instance Finsupp.semilatticeSup {ι : Type u_1} {M : Type u_2} [Zero M] [SemilatticeSup M] :
      Equations
      @[simp]
      theorem Finsupp.sup_apply {ι : Type u_1} {M : Type u_2} [Zero M] [SemilatticeSup M] (f g : ι →₀ M) (i : ι) :
      (fg) i = f ig i
      instance Finsupp.lattice {ι : Type u_1} {M : Type u_2} [Zero M] [Lattice M] :
      Equations
      • One or more equations did not get rendered due to their size.
      theorem Finsupp.support_inf_union_support_sup {ι : Type u_1} {M : Type u_2} [Zero M] [Lattice M] (f g : ι →₀ M) [DecidableEq ι] :
      (fg).support (fg).support = f.support g.support
      theorem Finsupp.support_sup_union_support_inf {ι : Type u_1} {M : Type u_2} [Zero M] [Lattice M] (f g : ι →₀ M) [DecidableEq ι] :
      (fg).support (fg).support = f.support g.support