Closures #
We define groupClosure, ringClosure, and fieldClosure, which represent the smallest nimber
equal or greater to another, which satisfies IsGroup, IsRing, or IsField.
For Mathlib #
instance
Subfield.small_closure
{R : Type u_1}
(s : Set R)
[DivisionRing R]
[Small.{u, u_1} ↑s]
:
Small.{u, u_1} ↥(closure s)
instance
Subfield.small_closure'
{R : Type u_1}
(s : Set R)
[DivisionRing R]
[Small.{u, u_1} ↑s]
:
Small.{u, u_1} ↑↑(closure s)
Groups #
theorem
Nimber.addSubgroupClosure_Iio_eq_Iio
(x : Nimber)
:
∃ (y : Nimber), ↑(AddSubgroup.closure (Set.Iio x)) = Set.Iio y
Returns the smallest IsGroup that's at least x.
Equations
Instances For
@[simp]
@[simp]
Rings #
theorem
Nimber.subringClosure_Iio_eq_Iio
(x : Nimber)
:
∃ (y : Nimber), ↑(Subring.closure (Set.Iio x)) = Set.Iio y
Returns the smallest IsRing that's at least x.
Equations
Instances For
@[simp]
@[simp]
Fields #
theorem
Nimber.subfieldClosure_Iio_eq_Iio
(x : Nimber)
:
∃ (y : Nimber), ↑(Subfield.closure (Set.Iio x)) = Set.Iio y
@[simp]
@[simp]