Basic order theorems #
theorem
not_lt_of_antisymmRel
{α : Type u_1}
[Preorder α]
{x y : α}
(h : AntisymmRel (fun (x1 x2 : α) => x1 ≤ x2) x y)
:
theorem
not_gt_of_antisymmRel
{α : Type u_1}
[Preorder α]
{x y : α}
(h : AntisymmRel (fun (x1 x2 : α) => x1 ≤ x2) x y)
:
theorem
AntisymmRel.not_lt
{α : Type u_1}
[Preorder α]
{x y : α}
(h : AntisymmRel (fun (x1 x2 : α) => x1 ≤ x2) x y)
:
Alias of not_lt_of_antisymmRel
.
theorem
AntisymmRel.not_gt
{α : Type u_1}
[Preorder α]
{x y : α}
(h : AntisymmRel (fun (x1 x2 : α) => x1 ≤ x2) x y)
:
Alias of not_gt_of_antisymmRel
.
theorem
not_antisymmRel_of_lt
{α : Type u_1}
[Preorder α]
{x y : α}
:
x < y → ¬AntisymmRel (fun (x1 x2 : α) => x1 ≤ x2) x y
theorem
not_antisymmRel_of_gt
{α : Type u_1}
[Preorder α]
{x y : α}
:
y < x → ¬AntisymmRel (fun (x1 x2 : α) => x1 ≤ x2) x y
theorem
LT.lt.not_antisymmRel
{α : Type u_1}
[Preorder α]
{x y : α}
:
x < y → ¬AntisymmRel (fun (x1 x2 : α) => x1 ≤ x2) x y
Alias of not_antisymmRel_of_lt
.
theorem
LT.lt.not_antisymmRel_symm
{α : Type u_1}
[Preorder α]
{x y : α}
:
y < x → ¬AntisymmRel (fun (x1 x2 : α) => x1 ≤ x2) x y
Alias of not_antisymmRel_of_gt
.
exists_between
for Finsets #
theorem
Finset.exists_between
{α : Type u_1}
[LinearOrder α]
[DenselyOrdered α]
{s t : Finset α}
(hs : s.Nonempty)
(ht : t.Nonempty)
(H : ∀ x ∈ s, ∀ y ∈ t, x < y)
:
theorem
Finset.exists_between'
{α : Type u_1}
[LinearOrder α]
[DenselyOrdered α]
(s t : Finset α)
[NoMaxOrder α]
[NoMinOrder α]
[Nonempty α]
(H : ∀ x ∈ s, ∀ y ∈ t, x < y)
:
theorem
Set.Finite.exists_between
{α : Type u_1}
[LinearOrder α]
[DenselyOrdered α]
{s t : Set α}
(hsf : s.Finite)
(hs : s.Nonempty)
(htf : t.Finite)
(ht : t.Nonempty)
(H : ∀ x ∈ s, ∀ y ∈ t, x < y)
:
theorem
Set.Finite.exists_between'
{α : Type u_1}
[LinearOrder α]
[DenselyOrdered α]
[NoMaxOrder α]
[NoMinOrder α]
[Nonempty α]
{s t : Set α}
(hs : s.Finite)
(ht : t.Finite)
(H : ∀ x ∈ s, ∀ y ∈ t, x < y)
: