Documentation

CombinatorialGames.Mathlib.Order

Basic order theorems #

theorem not_le_of_le_of_not_le {α : Type u_1} [Preorder α] {a b c : α} (h₁ : a b) (h₂ : ¬c b) :
¬c a
theorem not_le_of_not_le_of_le {α : Type u_1} [Preorder α] {a b c : α} (h₁ : ¬b a) (h₂ : b c) :
¬c a
theorem not_lt_of_antisymmRel {α : Type u_1} [Preorder α] {x y : α} (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) x y) :
¬x < y
theorem not_gt_of_antisymmRel {α : Type u_1} [Preorder α] {x y : α} (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) x y) :
¬y < x
theorem AntisymmRel.not_lt {α : Type u_1} [Preorder α] {x y : α} (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) x y) :
¬x < y

Alias of not_lt_of_antisymmRel.

theorem AntisymmRel.not_gt {α : Type u_1} [Preorder α] {x y : α} (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) x y) :
¬y < x

Alias of not_gt_of_antisymmRel.

theorem not_antisymmRel_of_lt {α : Type u_1} [Preorder α] {x y : α} :
x < y¬AntisymmRel (fun (x1 x2 : α) => x1 x2) x y
theorem not_antisymmRel_of_gt {α : Type u_1} [Preorder α] {x y : α} :
y < x¬AntisymmRel (fun (x1 x2 : α) => x1 x2) x y
theorem LT.lt.not_antisymmRel {α : Type u_1} [Preorder α] {x y : α} :
x < y¬AntisymmRel (fun (x1 x2 : α) => x1 x2) x y

Alias of not_antisymmRel_of_lt.

theorem LT.lt.not_antisymmRel_symm {α : Type u_1} [Preorder α] {x y : α} :
y < x¬AntisymmRel (fun (x1 x2 : α) => x1 x2) x y

Alias of not_antisymmRel_of_gt.

exists_between for Finsets #

theorem Finset.exists_between {α : Type u_1} [LinearOrder α] [DenselyOrdered α] {s t : Finset α} (hs : s.Nonempty) (ht : t.Nonempty) (H : xs, yt, x < y) :
∃ (b : α), (∀ xs, x < b) yt, b < y
theorem Finset.exists_between' {α : Type u_1} [LinearOrder α] [DenselyOrdered α] (s t : Finset α) [NoMaxOrder α] [NoMinOrder α] [Nonempty α] (H : xs, yt, x < y) :
∃ (b : α), (∀ xs, x < b) yt, b < y
theorem Set.Finite.exists_between {α : Type u_1} [LinearOrder α] [DenselyOrdered α] {s t : Set α} (hsf : s.Finite) (hs : s.Nonempty) (htf : t.Finite) (ht : t.Nonempty) (H : xs, yt, x < y) :
∃ (b : α), (∀ xs, x < b) yt, b < y
theorem Set.Finite.exists_between' {α : Type u_1} [LinearOrder α] [DenselyOrdered α] [NoMaxOrder α] [NoMinOrder α] [Nonempty α] {s t : Set α} (hs : s.Finite) (ht : t.Finite) (H : xs, yt, x < y) :
∃ (b : α), (∀ xs, x < b) yt, b < y