Documentation

CombinatorialGames.Mathlib.Neg

@[simp]
theorem Set.neg_setOf {α : Type u_1} [InvolutiveNeg α] (p : αProp) :
-{x : α | p x} = {x : α | p (-x)}
theorem Set.image_neg_of_apply_neg_eq {α : Type u_1} {β : Type u_2} [InvolutiveNeg α] {s : Set α} {f g : αβ} (H : xs, f (-x) = g x) :
f '' (-s) = g '' s
theorem Set.image_neg_of_apply_neg_eq_neg {α : Type u_1} {β : Type u_2} [InvolutiveNeg α] [InvolutiveNeg β] {s : Set α} {f g : αβ} (H : xs, f (-x) = -g x) :
f '' (-s) = -g '' s
@[simp]
theorem Set.forall_mem_neg {α : Type u_1} [InvolutiveNeg α] {p : αProp} {s : Set α} :
(∀ (x : α), -x sp x) xs, p (-x)
@[simp]
theorem Set.exists_mem_neg {α : Type u_1} [InvolutiveNeg α] {p : αProp} {s : Set α} :
(∃ (x : α), -x s p x) xs, p (-x)